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CHAPTER I 

INTRODUCTION 

In the design and use of large composite panels in structures such 

as aircraft and space vehicles a major concern is the ability of the 

panel to function (continue to carry a substantial part of its design 

load) after being damaged. One technique that has evolved from the 

stringer reinforced metallic panel is the buffer strip or hybrid panel 

shown in Figure 1. Because of the fabrication methods used in composites 

it is possible to make such a laminate by replacing specific fibers, 

usually parallel to the load axes, with fibers of the appropriate physical 

and geometric properties necessary to arrest a crack that originates in 

the parent laminate material. Since the buffer strips are usually narrow 

and relatively far apart the stiffness, weight, and strength of the 

undamaged laminate is not significantly effected by the replacement. 

Much experimental work has been done to investigate this behavior, 

i.e. to determine the best buffer strip material, with the studies of 

Eisenmann and Kaminski [ll, Hess, Huang and Rubin .[ZJ, Avery and Porter 13 

Verette and Labor [4], and Poe and Kennedy [5] being significant contribu- 

tions in this area. The same cannot be said for published analytical 

solutions and it is this question that is considered in the present study. 

Some of the first work in modeling a uni-directional composite con- 

taining broken fibers was presented by Hedgepeth [6] where the case of 

no additional damage other than the initial notch was considered. This 

study was extended by Hedgepeth and Van Dyke for the special case of one 

I, 
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Figure 1. A Typical Buffer Strip Laminate Configuration 
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broken fiber with matrix yielding parallel to the fiber [7] and for one 

fiber with longitudinal splitting in the matrix [8]. Goree and Gross 

[9] extended the Hedgepeth solutions to include longitudinal matrix 

yielding and splitting for an arbitrary number of broken fibers. The 

results of Goree and Gross gave very good agreement with experimental 

results for brittle matrix composites which exhibit large longitudinal 

matrix splitting. For ductile matrix composites such as boron/aluminum, 

which exhibit large yielding but very little splitting in the matrix, 

this model predicted the right trend but the agreement was not very 

good, especially for short notch lengths. Goree, Dharani and Jones 

[lo] attempted two modifications to the above solution. First, the 

matrix was assumed to be strain-hardening and secondly, a cover sheet 

was included over the main laminate. The results of [lo] showed that 

the inclusion of either a strain-hardening matrix or the addition of a 

cover sheet did not improve the agreement between the predicted and 

experimental results. Based on the observed fact that in addition to 

longitudinal yielding of the matrix, a certain amount of stable trans- 

verse extension of the initial notch under increasing applied load 

takes place, Dharani, Jones and Goree [11] then extended the solution of 

[9] to include transverse damage ahead of the initial notch in addition 

to the longitudinal matrix damage. The results of [ll] showed a very 

significant improvement in the ability of the model to represent the 

behavior of a ductile matrix composite. 

In all these analytical studies the laminate is modeled as a two- 

dimensional region having a single row (mono-layer) of parallel, identi- 

cal, equally spaced fibers, separated by matrix. The damage is taken to 



consist of an arbitrary number of broken fibers such that all breaks 

lie along the x-axis, but they need not form a continuous break (notch). 

The fibers are assumed to be of much higher strength and extensional 

stiffness than the matrix and all the axial load is assumed to be 

carried by the fibers, with the matrix transfering load by shear 

stresses as given by the classical shear-lag assumption. One very impor-> 

tant feature of the shear-lag assumption is that is simplifies the equili- 

brium equations by removing the transverse displacement dependence from 

the longitudinal equilibrium equation. The fiber stress and matrix shear 

stress can then be determined without solving the transverse equation. 

The methods of analysis developed and discussed in the above 

studies [6-11] are extended in the present work to determine the 

stresses and displacements in a hybrid uni-directional laminate having 

an initial notch in the vicinity of a single finite width region of 

different material properties as shown in Figure 2. This geometry is 

an idealization of the usual periodic placement of buffer strips as 

indicated in Figure 1 and it is assumed that the stresses near the 

notch tip and the single buffer strip are approximately the same as 

those in a wide panel with relatively narrow buffer strips. 

Of particular interest is the investigation of the behavior of the 

laminate as a function of the relative ultimate stress and extensional 

modulus of the buffer strip fibers, the buffer strip width and initial 

notch length. 

As an initial step in understanding the basic mechanism of crack 

growth and arrest in a hybrid laminate, the main thrust of the investiga- 

tion will be to study the behavior of the laminate as a function of the 

design parameters; fiber/matrix properties, buffer strip geometry and 

4 
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Figure 2. Idealized Buffer Strip Laminate 



the initial crack length. In order to simplify the analysis, the 

effect of any additional damage, e.g. longitudinal matrix yielding 

and splitting [9] or transverse matrix and fiber damage [11] will not 

be considered. 

A typical buffer strip laminate usually contains angle plies as 

well as zero degree plies. It is felt, however, that much of the 

characteristic behavior of the buffer strip region can be represented 

by the uni-directional laminate, as a major portion of the load is 

carried by these fibers. It appears that a primary function of the 

angle plies is to prevent longitudinal matrix splitting in a brittle 

matrix such as epoxy. This can be accounted for to some degree in the 

present solution by allowing the matrix to support large strains without 

splitting. 

The presentation of the solution will follow the order of the 

development by the author as this seems to indicate more clearly the 

significant points of the analysis. Results will, however, only be given 

for the final solutions corresponding to the buffer strip laminate and 

the finite width strip. First the solution for a crack in a half-plane 

having arbitrary shear stresses applied to the free-edge, (which forms 

the basis for all the later solutions), will be developed. By matching 

boundary conditions along the interface, the solution for two different 

adjoined half-planes will be given and then the adjoined half-plane solu- 

tion will be modified to account for a second interface, resulting in the 

buffer strip problem. The case of the finite width strip with broken 

fibers is obtained as a special case of the buffer strip problem by set- 

ting the shear stresses along the two interfaces to zero. These solutions 

are all presented in Chapter II. Chapter III deals with the numerical 
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technique used to solve a system of linear algebraic simultaneous equa- 

tions coupled with a set of linear Fredholm integral equations of the 

second kind. A special method developed to evaluate accurately inte- 

grals having a cusp is emphasized. Chapter IV gives results and con- 

clusions for the buffer strip problem and the finite width strip. 



CHAPTER II 

FORMULATION 

Uni-Directional Half-Plane with Broken Fibers 

A uni-directional array of parallel fibers with an arbitrary number 

of broken fibers in the form of a notch is shown in Figure 3. The 

laminate is subjected to a prescribed shear stress, T,(Y), along the 

free edge in addition to a remote uniform tensile stress in the axial 

direction. Fiber breaks occur along the x-axis (axis of symmetry) and, 

since the loading is symmetric, only the upper half of the laminate is 

considered in the analysis. 

The fibers are taken to be of much higher strength and extensional 

stiffness than the matrix and therefore all of the axial load is assumed 

to be carried by the fibers with the matrix transferring load by shear 

stresses as given by the classical shear-lag assumption. The axial fiber 

stress, u,(y), and matrix shear stress, T,(Y), are then given by the 

simple relations 

C+$') = EF 
dv,(y) 

dy 3 and 

'n(Y) 
GM 

= h h$Y) - V,-,(Y)1 - (1) 

Where v,(y) is the axial displacement of the fiber n at the loca- 

tion y, EF is the Young's modulus of the fiber, G,,,, is the equivalent 

matrix shear modulus and h is a shear transfer distance. Because of the 

interference between fibers it is unlikely that GM will be the homo- 

geneous matrix shear modulus or h the actual fiber spacing, and it is 
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Figure 3. Uni-Directional Half-Plane with Broken Fibers 



pointed out in [lo] that these values should be determined experimentally 

for a given laminate. It is also shown in [lo] that a single experi- 

ment giving the crack opening displacement as a function of applied 

load is sufficient to determine both the equivalent shear modulus GN 

and the shear transfer distance h for a particular laminate, indepen- 

dent of the notch length. That is, these parameters are material con- 

stants and depend only on the fiber and matrix properties and the 

fiber volume fraction but not on the sizes of the damage. 

By virtue of the shear-lag assumption the longitudinal and trans- 

verse equilibrium equations become decoupled and the fiber axial dis- 

placements and stresses can be obtained without solving the transverse 

equilibrium equation. Therefore, only the equilibrium equation in the 

longitudinal (axial) direction will be considered. With reference to 

the free-body diagram of a typical fiber-matrix region shown in Figure 3, 

the equilibrium equations in the longitudinal direction is given by 

AF d$y) 
t dy + Tn+l(Y) - T,(Y) = 0 , 

for all fibers except n = 0, and 

daob) 
dy + y(Y) - T,(Y) = 0 , for fiber 0 . 

(2) 

(3) 

Using the stress-displacement relations, Equation (1), in the above 

equilibrium equations, the following set of differential-difference equa- 

tions is obtained: 

AFEFh d2vn 
- - 

GMt dy2 + 'n+l - 2vn + 'n-1 = ' 3 and 

AFEFh 
2 

d 'o + v - - 
GMt dy2 1 - 'o = 'a(y) S 

(4) 

(5) 
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Noting the coefficient of the second derivative term in the above equa- 

tions, the following changes in the variables are suggested: 

zoo dvn 
'n mn 

=E - 
F dy ' and 

v, = urn n * 

Algebraic manipulation then gives 

dVn 
On = ucn x and -cn = da, ('n-'n-1) ' 

(6) 

(7) 

where, n , 0 n and Vn(n) are non-dimensional. 

The resulting equilibrium equations in non-dimensional form are given by 

d2V 
+ + v,,, - 2v, + vnml = 0 , and 
dn 

d2V 
++v, - 
dn 

v, = Tab) , (9) 

where, 

These differential-difference equations are reduced to differential 

equations by introducing the even valued transform as 
Co 

ihe) = c V&d cosUn+&l , 
n=O 

from which 

V&l) = 2 yi(n,e)cos[(n+$e]de . 
=0 

(11) 

Making use of the above transformation and the orthogonality property of 
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the circular functions, the two equilibrium equations may be written as 

one equation valid for all values of n and n as follows: 

2[1- cos(e)]v cos[(n+$e]de 

= z Lr;,(n)cos(s/2)cos[(nt$)s]d8 , 

which is of the form 

1 ITF(n,e)cos[(n+$a]de = 
TO 

0 for all n and n . 

Noting the definition of i(n,e) in Equation (10) and (11) it is seen that 

the function F(n,e) is even valued in 8 and therefore, if the integral is 

to vanish for all n, the function F(n,e) must be zero. The single equa- 

tion specifying i(n,e) is then 

(12) 
d2i &2v 

dn 
2 = ~ah)cos(e/2) , 

where, 62 = 2[1- cos(e)] = 4 sin2(e/2) . 

The solution to the problem of vanishing stresses and displacements 

at infinity and uniform compression on the ends of the broken fibers will 

now be sought. The complete solution is obtained by adding the results 

corresponding to uniform axial stress and no broken fibers to the follow- 

ing solution. The appropriate boundary conditions are.as follows: 

d$.,bd 
vnh) = 0 3 d,., =o, as n -fm, for all fibers, (13) 

dV,( d 

drl 
= an(n) = - 1 , at n = 0 , for all broken fibers, (14) 

V,(n) = 0 , at n = 0 , for all unbroken fibers. (15) 

The complete solution to Equation (12), satisfying vanishing stresses 

and displacements at infinity, is given by 

12 



%t,e) = A(a)em6n - v J- sinh[s(n-t)];,(t)dt , 
r) 

06) 

where the function A(e) is yet unknown. The remaining two boundary con- 

ditions give 

dV,(O) 
= 2 ;[-6A(e) - cos(e/2)J~cosh(stl;,(t)dt]cos[(n-+e]de=-1, 

dq no 0 
(17) 

for all broken fibers, and 

V,(O) = c PCA(e] + w Tsinh(bt);,(t)dt]cos[(n+!$e]de =D , 
0 

08) 

for all unbroken fibers. Equation (18) is solved exactly by taking 

A(e) t w lm sinh(gt);,(t)dt = m!l B, cos[(N*+m+$] , (19) 
0 = 

where, M is the number of broken fibers. By eliminating A(e) between 

equations (17) and (19), the stress boundary condition reduces to 

?TM 
L / c B, cos[(N*+m+$e]cos[(nti)e]&de 
Tr 0 m=l 

t 2 Jmcos(e/2)cos[(n+$e] Ye 
-6t 

nO 
;,(t)dt de = 1, (20) 

0 

for n = N* + l,...,N. 

For a given shear stress distribution, i,(t), Equation (20) reduces 

to a set of linear algebraic equations in the Fourier constants B,. From 

Equations (16) and (19), A(e) may be eliminated to obtain i(n,e) in terms 

bf the constants B,. Recalling the relation between i(n,e) and V,(n), 

an expression can be obtained for the axial fiber displacement V,(n) as 

-6q M 
V&l) =2JTIe 

=0 
c B, cos[(N* + m + $e]cos[(n+$e]de 

m=l 

_ 1 ITI cos( e/2) O3 

nO 6 ; D(a,n,t) ;,(t)dt cos[(n+$s]de , (21) 

where D(b,n,t) = e -6 IT)-q _ e-el+t) - 

13 



The axial fiber stress is obtained by differentiating Equation (21) with 

respect to n and is given by 

0 = dV,( d 
n do 

-6rl M = - 5 l’tie c B, cos[(N*+m+$e]cos[(n+$e]de 
0 m=l 

- + A0s(e/2)rm 
-a-l+t) -+l-tl 

e -pe 
0 0 > 

;,(t)dt cos[(n+$e]de, 

VW 
where, p = 1 for tzn , and 

P = -1 fort>n. 

Adjoined Uni-Directional Half-Planes 

Figure 4 shows two uni-directional half-planes of different fiber 

and matrix properties which are assembled to form adjoined half-planes. 

Both planes may have an arbitrary number of broken fibers. Superscripts 

I and II are used to designate quantities corresponding to plane I and II 

respectively. The normalized spatial variables, n and 5, in the longi- 

tudinal direction are related by 

The shear stresses, T:(n) and ;iI(E;), at the interface are normalized 

with respect to material properties of plane I and II respectively, and 

are related to the actual shear stresses as follows: 

and 

14 
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(23) 

where, T:(Y) and -c:'(y) are the actual shear stresses at the interface 

acting on plane I and II. Since the remote displacements and hence the 

remote strains are assumed equal, the remote stresses in planes I and II 

must be related by 

I II 

(24) 

If ;:(I-,) and ;~I(E) are known then the solution for each of the half- 

planes is the same as that developed in the previous section, Equation (20). 

The Fourier constants Bi and Bkl corresponding to broken fibers in plane 

and II can then be obtained by solving the following sets of equations 

for known ;I(n) and ;I1(~)* a a. 

Ml 
c Blfi + ?cos[(N 

m=l 0 
*,+m+$e]cos[(n+k)e]sde 

+ 2 rn cos(e/2)cos[(n+$)e]lm e 
-6t 

TO 0 
+t)dt de = 1 , 

and ": B;I f IT cos[(N 
m=l 0 

*2+m+~)e]cos[(n.+$e]sde , 

3 IT 103 -Bt -TT 

+ : r cos(e/2)cos[(a+$)e]r e ?"(t)dt de = 1, (25) 
0 0 

for n = N; t 1, N; + 2,.--,N, and R = Nltl, N;t2,...,N2 , 

where, Ml and M2 are the number of broken fibers in planes I and II. The 

normalized displacements of a fiber in plane I and II are then given by 

c B,!, cos[(N;+m+i)e]cos[(n+$e]e 
-6rl 

de 

I 

_ 1 rr cosW2) 
nO 6 cos[bd$e] ra D(G,n,t) Ti(t)dt de , (26) 

0 

16 



and VII(E) n 
-c 2 I= “,2 BII -65 

“0 m=l m 
cos[(N;tmt~)e]cos[(nt$)e]e de 

-‘I”- 
=0 

cos[(n+i)e] Im D(s,C,s) ?iI(s)ds de, (27) 
0 

where 

and 

f-i- 

AFh I1 
vi'(y) = - 

EFGMt 

When the above two half-planes are joined together the shear stress 

along the interface is unknown, but from equilibrium the shear stresses 

-c:(y) and ski acting on each of these two half-planes must be equal 

and opposite. Further, as the shear stress is directly related to the 

distortion of the matrix from the shear-lag assumption, it follows that 

these stresses must be proportional to the difference in the displacement 

of the first fibers of plane I and II. These conditions result in the 

following two equations: 

T;(Y) = - Ta II(Y) 3 and (29) 

= (GM/d V;(Y) - V;I(Y) 
I 

, (30) 

. 
where, (GM/h)' is the equivalent shear stiffness of the interface. It is 

interesting to note that in a continuous elasticity solution one would 

match surface tractions and displacements at the interface while in the 

present. discrete modeling solution the shear stresses are required to be 

equal and the shear-lag relation, Equation (30), takes the place of the 

displacement equality. 

17 



Substituting for the actual displacements in terms of normalized values 

using Equation (28), and recalling the relation between the actual and 

normalized shear stresses from Equation (23), Equations (29) and (30) re- 

duce to 

;;I(<) = - (GM/h)l(h/GM)ll +d/R, , and (31) 

Al) II - R, V, (5) (GM/h)'/(8,/h)1 
I 

. 

a (32) 

where, 

R, = #F)11($$)1 . (33) 

Using Equations (26) and (27), Vi(n) and Vi'(C) can be found and 

substituted into Equation (32) thus resulting in an integral equation 

for T:(n) in terms of the Fourier constants, B,!, and Bfl, and the nor- 

malized shear stresses, T:(n) and T:'(c). The spatial variable 5 and 

the normalized shear stress Til(E) may be eliminated from the above in- 

quations for the Fourier constants, tegral equation and also from the e 

Equation (25), resulting in the fol 

two series equations and one linear 

lowing set of governing equations; 

integral equation: 

m=l 
m ; / cos[(N;+m+$e]cos[(nt$e]dde 

0 
0) -tit 

+ 2 /' cos(e/2)cos[(n+$e] 1 e 
TTO 

;I(t)dt de = 1 
0 

a , (34) 

M1 
c B1' 2 T I' cos[(N;+m+$e]cos[(e+i)e]&de 

m=lm 0 

G122 = co -qt 
- 2F / cos(e/2)cos[(a.+e] r e &)dt de = 1 , (35) 

R1 O 
0 

18 



for n = NT + 1 ,--*, N1 and R = NG + 1 ,-*-, N2 , and 

$n) 
Ml -6n 

=G 2 ; 
il 7r c Bi cos[(N;+m+$e]cos(e/2)e de 

0 m=l 

M2 II 
- RIGil 2 JTI c Bm 

-qn 

'0 m=l 
cos[(N;+m+i)e]e de 

- Gil ,“~, 
0 0 

D(&,.,J) + D(s,,n,t) de$t)dt 1 
(36) 

where, Gil = (GM/hh/c,)l , G12 = (G,/h)'(h/G,)II and cS~= s/Rl. 

The Buffer Strip Laminate 

Figure 5 shows a finite width strip (buffer strip) between two half- 

planes of different or of the same fiber and matrix properties. One of 

the half-planes, plane I, and the finite strip, region II, may contain an 

arbitrary number of broken fibers. The normalized spatial variables n, 5 

and c are related to each other in the same way as in Equation (22). The 

normalized shear stresses T:(n), T:'(C), T:'(C) and ;i"(~) are related 

to their corresponding actual shear stresses in the same manner as in 

Equation (23). Further, the remote strains in all three regions are 

assumed equal. 

The solutions for planes I and III can be obtained for known T:(n) 

and ;irl (5) from the half-plane solution and therefore we need to de- 

termine the solution for the finite strip, region II, only. This solu- 

tion is developed by considering the half-plane shown in Figure 3 with 

the following special condition. It may be assumed that the matrix be- 

tween the fiber NW and (Nw + 1) splits all the way to infinity and that 

an external shear stress Tb II(Y) is applied on the surface of the split 
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as shown in Figure 6. The introduction of a split with or without the 

external applied shear stress results in two special equilibrium equa- 

tions for the two fibers on either side of the split [9, 10, 111 in 

addition to those valid for the free-edge fiber and the generic fiber, 

n, given by Equations (8) and (9). These equilibrium equations in the 

normalized form are as follows: 

d2V11 
0 

dc2 
t vi* - VII = g*(g) 

0 , for fiber 0 , 

d2V11 

de 
; + Vii, - 2V,!,I + Vif, = 0 , for fiber n , 

(37) 

(38) 

d2V11 NW II II 

dc2 
- 'NW l ‘$$+, = - Tb -11k) , for fiber NW , and (39) 

d2V1* Nw+l II II 

dc2 
+ 'NW+2 - 'Nwtl = =b -II(E) , for fiber Nwtl . (40) 

The left hand sides of Equation (39) and (40) can be reduced to the 

standard form by adding or subtracting a term (V/,T&, -Vii) on both sides. 

Making use of the transforms similar to Equation (10) and (11) and fol- 

lowing the procedure of the half-plane problem, the single equation 

specifying the transformed normalized displacement ?I(E,e) can be 

obtained as 

d2i11(g e) 

dc2 
' - 

where, 

g(c) = vi;+, 

,2ij11(~ 8) = -I1 , ~~ k)cosWW [g(s) - @dlF2 3 (41) 

II - VNw , and F2 = cos[(Nw + &)e] - cos[(Nw + $81. 

The solution to Equation (41) satisfying vanishing stresses and dis- 

placements at infinity and unit compression on the crack surface is then 

given by: 
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shear stress on the surface 
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Figure 6. Half-Plane with Matrix Split 
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m=l 
m T 1 cos[(N;tm+i)e]cos[(n+$e]de 

0 

i-2 rT cos(e/2)cos[(n+$e] Im e 
-tit. -11 

nO 
-ca (t)dt de 

0 

t2 r' F2 cos[(n+i)e] Iw e 
-6S 

TO 0 
(s) ds de = 1, (42) 

> 

for all broken fibers. 

If ;iI(s), g(t) and ;;I (s) are known, Equation (42) reduces to a set of 

linear algebraic equations in BA1 and can be solved directly. 

When the above finite strip, region II, is introduced between the 

two half-planes, planes I and III, as shown in Figure 5, it results in 

two interfaces each similar to the one discussed in the problem of adjoined 

half-planes. The interfacial shear stresses f:(n), T:'(E), ?i'(t;) and 

y(5) can be obtained in the same manner as in the previous solution, 

that is, using the following relations: 

T;(Y) = - #Y). and 

T;(Y) = (GM/d1 b’;(Y) - Vi1 (y)], between planes I and II, (43) 

and 

-c;'(y) = siII(y), and 

.;?Y) =-(c,/d2 t-$(y) - v. 'II(y)] between planes II and 111,(44) 

where (GH/h) i1 and (GM/h)i2 are the shear stiffnesses of the respective 

interfaces. By definition g(5) is given by 

Sk) = (At1 - vi; ' (45) 

Equations (43) - (45) along with the two equations for the Fourier con- 

stants from the stress boundary conditions on the broken fibers in region 

I and II, Equations (34) and (42), represent the complete solution for the 
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finite width buffer strip problem. In Equation (45) it must be noted 

II that VNw is the normalized displacement of fiber NW of the finite strip, 

whereas VNw+l is the normalized displacement of the first fiber of a new 

half-plane having applied shear stresses -rb -'I(C) along the free edge and 

fiber/matrix properties of the finite strip. 

As in the previous problem, first the actual displacements are sub- 

stituted in terms of their corresponding normalized displacements, then 

the normalized displacements are substituted in terms of the normalized 

shear stresses and the Fourier constants. Further ;I1(c) and ;'I1 3 a b (d 

can be eliminated knowing the relationship between the actual shear 

stresses, Equations (43) and (44). Then the final set of governing equa- 

tions for the finite width buffer strip problem can be listed as follows: 

> B12 IT m T r cos[(N;+m+i)e]cos[(n + +e]sde 
m=l ' 0 

t 3 ;' cos(e/2)cos[(n+$eJ lm e 
-(St 

$(t)dt de = 1 
0 

a , 

M2 
c Bil $ J'cos[(N;+mt$e]cos[(a.+$e]dde 

m=l 0 

G122 Tr --- 

R21 

r cos(e/2)cos[(n.+$e] rco e 
-qt 

TO 
;'(t)dt de a 

0 

t 2 I+F2cos[(a+$e] 1m e 
-6s 

"0 0 
g(s) - $1 (s) 

> 
ds de=1 , 

for n = NT t 1 ,. *. 9 N, and R = N; + 1 ,a.*, N2 , 

Ml 
;I(q) = c B1 G 

-dn 
a m il p JTI cos[(N;+mt$e]cos(e/2)e de 

m=l 0 

_ “: BII 
GilRl i I' cos[(N;+m+$e]cos(e/2)e 

-610 
de 

m=l m 0 

(46) 

(47) 
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OD Gil 
-/ - 

r* cos2(e/2) 

0 no 
6 [D(G,rl,t) + G,2 D(+n,t)]de $t)dt 

R1 IT + r~Gi1 ~ / 
0 

cos(e'2) F2 D(s,n/R,,s)de [g(s)- +s)]ds, 6 
0 (48) 

-65 
g(5) = - m ; .I-~ cos[(N;+m+;)e]cos[(Nw+;)e]e de 

m=l 0 

-/ 
"G12 1 

-yTj- ;r 

O Rl 0 
a w cos[(Nw+$e]D(6,t/R,,c)de ;;(t)dt 

+/ 
m , IT COS[(NW+$-)8] 

iYr 6 F2 D&&de g(s)ds 
0 0 

O3 1. rn -r 
cos2(e/2) + 

F2cos[(Nw+;)e] 

nO 
6 6 D(s,c,s)de +s)ds, 

0 1 
(49) 

and 
M2 

~~I(~) = - mu, B~I Gi2 a 
-66 

r71cos[(N;+m+~)e]cos[(Nw+~)ele de 
0 

- / O" Gi2G12 1 -rr j-' COS(:/2) 

2 0 
cos[(Nw+$e]D(6,t/R, &)de T$dt 

0 R1 

+r 
"Gi2 T 

-r 
cos[(Nw -+e-J 

0 RO 
6 ~~ D(s&,s)de g(s)ds 

where 

I 
de +s)ds (50) 
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I - 

"1 = UR, , 

“2 = “/R2 , 

G il = (G,/h)"(h/c,)I , 

G i2 = (GM/h)i2(h/GM)11 , and 

G23 = (GM/h)'I(h/GM)"I . 

The solution reduces to two series equations and three linear integral 

equations. 

Uni-Directional Finite Width Strip with Broken Fibers 

In this section a solution is obtained for a uni-directional finite 

width strip containing an arbitrary number of broken fibers as a special 

case of the solutions already developed. With reference to Figure 5 it 

can be seen that if the interfacial shear stresses ~~ 'I(Y) and $(Y) 

acting on the region II are zero then it results in a finite width strip 

with broken fibers subjected to a uniform remote axial stress as shown 

in Figure 7. Therefore the solution to the finite width strip problem 

can be obtained as a special case of the solution developed for region 

II of the buffer strip laminate by setting ;il(t) and ;il(s) to zero in 

Equations (42). With reference to Figure 7 these equations are given as 

M 
c B, f 1' cos[(N*+m+$)e]cos[(n+$)e]de 

m=l L L 

0 

+ $. IT 
0 

for all broken fibers, 

F2 cos[(n+$)e] Im e 
-bt 

g(t)dt de = 1 , 
0 

and 

M -65 
9k) = - 1 B, 5 r' cos[(N*+m+i)e]cos[(Nw+$e] e de 

m=l 0 

+ rm $ 
0 

r 
T cos[(Nw +i)e] 

6 F2 D@&,t)de g(t)dt 
0 

(51) 

(52) 

26 



Figure 7. Finite Width Uni-Directional Strip 
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where 

F2 = cos[(Nw + $81 - cos[(Nw + s)e] , and 

dd ‘= vNw+, - vNw - 

Since by definition VNw+l is the displacement of the first fiber of 

a new half-plane having fiber/matrix properties of the finite width 

strip and no applied shear stress along the free edge, it must be equal 

to zero. Therefore g(s) is given by 

!A) = - VNw - (53) 

Therefore the solution of the finite width strip.reduces to one 

series equation coupled with one linear integral equation. The location 

and the number of broken fibers are arbitrary except that .the fiber 

breaks must be along the x-axis. The solution obtained holds for a 

central notch, an edge notch, an off-center notch, or for multiple 

notches along the x-axis. 
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CHAPTER III 

SOLUTION TECHNIQUE 

In all the problems dealt with so far, the solution reduces to one 

or two series equations coupled with one or more linear Fredholm in- 

tegral equations of the second kind. Since there is no exact closed 

form solution available to solve such a system of equations,a numerical 

procedure is developed and presented in this section. The technique 

makes use of a method given by Riez [12], to solve a linear Fredholm 

integral equation of the second kind defined within a semi-infinite 

interval of integration. The solution is based on the fact that a given 

integral over a semi-infinite interval may be approximated by the 

Gauss-Laguerre quadrature rule as 

rm f(x)dx = 
k -Xi 
C Wi e f(xi 1 (54) 

0 i=l 

where Xi is the ith zero of the Laguerre polynomial, Lk(x), and wi is 

the corresponding weight function given by 
x. 

" = [(k+l) L:,i(“i)12 . 

The Laguerre polynomial Lk(x) iS given by 

Lk(y) = ex 4!?L&3 . 
dxk 

Since the form of the equations for each of the solutions is the 

same, the development and application of the numerical procedure can be 

demonstrated, without loss of generality, by taking the equations corre- 

sponding to one of the solutions. Consider then the solution corre- 

sponding to the problem of adjoined half-planes given by Equations 
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m=l 
m Y r cos[(N;+m+$-)e]cos[(n+$e]sde 

0 

+ f jB cos(e/2)cos[(nt$e] roe e-6t ;I(t)dt de = 1 , 
0 0 a 

M2 
c B;I $ 

m=l 
?cos[(N;+m++e]cos[(at$)e]sde 
0 

G122 Tr co -yt 
- 2-+- r cos(e/2)cos[(e+$e] / e 

Rl O 0 
+)dt de = 1 , 

for n = NY+1 ,..', N, and R = N;tl ,**a 3 N2 , and 

T:(q) = Gil $ ITI 
Ml 
c Blfi cos[(N;+mt!$e]cos(e/2)e 

-h 
de 

0 m=l 

(57) 

(58) 

- RIGil 
1. JT “: BII cos[(fqit m t $e]cos (e/2)e 

-&p-l 
de 

*o m=l m 

- Gil W,n,t) 
G12 

+ - 
R1 

DO, at) 1 
X de ;i(t)dt . (59) 

Integrals over the spatial variable, t, in the above equations, 

defined over the semi-infinite interval, can now be replaced by the above 

series representation to yield 

Ml 
c 

i 

2 1' cos[(N;+m+$e]cos[(n+$)e]sde B,!, 
m=l '0 I 

-6tj 

de wje 5 

I 

'I = 1 (60) 

2 rT cos[(Nz+m+$e]cos[(n.t$e]sde 
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cos(e/2)cos[(e+$e]e 
-6ltj 

de wje 5 C(t )=l a j 3 

(61) 

for n = NY + 1 I---, Nl ' and R = N; + 1 ,.-a, N2 ' and 

I k 
6 + C '(17i 3 tj)Wje 

5 
ij 

I 

;+t ) 

j=l 
a j 

Ml 
- c 

m=l ( 

Gill /cos[(N;+m+l)e]cos(e/Z)e 
'6ni 

de BA 
0 I 

M2 
t G 

m=l 
RlGil 3 1' cos[(N;+m++)e]cos(e/2)e 

-"lQi de 

0 

X BA1 = 0, i = l,...,k (62) 

where, 6.. 
1J 

= 1 for i = j 

=0 for i#j, 

2Gil IT 
and K(~i,tj) = 7 / cos2~e'2) [D(s,~i,tj) + - G12 

0 Rl 
D(sl sni ,tj)Ide - 

Therefore, the solution of the integral equation coupled with a set of 

series equations reduces to solving a system of linear algebraic equations 

in BA , Bil and explicit values of T:(Q) at the quadrature points. The 

above system of equations is solved by the method of Gauss-elimination 

with partial pivoting. 

It must be pointed out that the terms in the integral equation of 

the form e -+l-tl have cusp at n= t and the quadrature representation in 

the standard form, Equation (54), results in large inaccuracies especially 

for large values of n. This has been overcome by modifying the above 

quadrature rule by deleting selected terms in the series and replacing 

them by closed form integration in the neighborhood of the cusp. With 

reference to Figure 8, the integral over the semi-infinite interval is 

then represented by the modified equation 
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Figure 8. Integrand with a Cusp 



k 
/co K(lli,t) Ti(t)dt = C K(lli,tj) Ti(tj)e 

3 

0 j=l 
wj 

- II 
K(ni ,ti-1) Ti(ti-1 )e 

t. 
l-l 

Wi-1 t K(ni,ti) Ti(ti)e 
'i 

Wi 

+ K(qi ,ti+l) ;i(ti+l jetit Wit1 
3 

% %+I+*2 
+ r (63) 

t -*1 

K(ni,t) Ti(t)dt+ J 

i-l 'i 

K(ni,t) '~(t)dt 

I 

where, 

A1 = (ti-1 - ti_2)/' 3 and 

*2 = (ti+2 - ti+l)'2 . 

Since ;i(t) is yet unknown, the two integrals on the right hand side 

of Equation (63) can not be evaluated in a closed form. However, if the 

function T:(t) is taken to be the average of the terminal.values within 

each of the intervals, the above two integrals can be expressed as 

ti 
r K(rli't) -~(t)dt = 

['~(ti-1) + ;~(ti)] 5 

2 r 
t. -A, 

l-1 
t i-l -*1 

K(ni ,t)dt 3 

and 

ti+l+A2 
r K(ni,t) ;~(t)dt = 

C-itti) + 
2 

-i(i++,)] %;l+*2 
K(ni ,t)dt s (64) 

ti 'i 

Substituting Equation (64) into Equation (63) and rewriting 

results in 

/m K(rli,t) Ti(t)dt = 
k 
C* K(ni,t) ;i(tj)e 3 wj 

0 j=l 

t-1 
'i 

2 ti ;-A, 
K(rli,t)dt ~~(ti_1) 
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t. +A2 1+1 
K(ni,t)dt f I 

% 

K(qi ,t)dt 1 'i(ti) 

+ i ti+:+A2 
'i 

K(nist)dt Ti(ti) 3 (65) 

where c* excludes terms corresponding to j =i - 1, i and itl. 

The quadrature-rule in the modified form, Equation (65), is used to 

represent those integrals in which the integrand has terms with cusp. 

The two series equations remain unaltered and the substitution of Equa- 

tion (65) into Equation (59) results in 

k 
x*K(ni,tj)Wj e tj T1(t ) + a 

j=l 
a j i-1 Ti(ti-l) + (l+ai)Ti(ti,) + ai+l Ti(ti+l) 

Ml 
- c 

m=l I 
Gilt rTI cos[(N;+m+$e]cos(e/2)e 

-611. 
'de Bi 

0 I 

M2 
+ c RIGil 

2 Tr 

m=l 
r cos[(N;+mt$e]cos(e/2)e YF o 

-"lni de 

I 
X Bil = 0 , i = l,...,k . (66) 

where, 
% 

' / ai-l = 7 t -a K(Qi ,t)dt 3 
i-l 1 

ti 
a. =l / K(lli,t)dt + i 

titl+A2 
K( ni ,t)dt 3 and 

1 
2 ti-l-Al 

t +A 
1 

it1 2 

aitl = 9 tr K(ni,t)dt * 

i 

This again reduces to solving set of linear algebraic equations as before. 
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CHAPTER IV 

RESULTS AND CONCLUSIONS 

First, typical results are given for a Graphite/epoxy laminate con- 

taining a buffer strip as shown in Figure 9. The crack growth behavior 

of the lamina is studied by varying the buffer strip material, the width 

and the thickness of the strip and the initial crack length. The three 

materials considered for the buffer strip are Nylon, Kevlar and S-glass, 

all in an epoxy matrix. The matrix and fibers are assumed to be linearly 

elastic. The failure criterion is that a fiber fails upon reaching its 

ultimate failure stress as determined from an unnotched coupon test. 

Figure 10 presents results corresponding to initial crack growth in 

plane I, crack arrest at the interface, crack growth in the buffer strip 

and subsequent lamina failure. In these results all fibers are of the 

same cross-sectional area and in all cases the buffer strip is ten 

fibers wide. Since all the buffer strip candidate materials are of 

lower modulus than that of the parent laminate, which in this case is 

Graphite/epoxy, the stress concentration factor at the near end of the 

notch (nearer to the interface) is always higher than that at the far 

end of the notch. The solid line in Figure 10 represents the remote 

stress required to initiate crack extension, (fail the first unbroken 

fiber in front of the notch, fiber A in Figure 9). The remote stress 

required to fail the lamina catastrophically, (fail the first fiber in 

plane III, fiber B in Figure 9) is given by the broken line in Figure 10. 

Both these stresses are functions of the initial crack length and decrease 

with increasing length. The crack growth takes place by breaking 
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Figure 9. Buffer Strip Laminate with Initial Damage 



consecutive fibers from the crack tip to the interface. Then, depending on 

the stress level required to run the crack to the interface and depending 

on the buffer strip material, the crack may arrest. It is very interesting 

to note that all three buffer strip materials require an increasing stress 

to continue the crack growth in the buffer strip, although Kevlar will 

only arrest a crack if it initiates under fairly low load, i.e. initially 

close to the interface. 

Total lamina failure will occur when either the buffer strip is fully 

broken or when the first fiber in plane III, fiber B, fails. In both 

cases continued crack growth is unstable once fiber B fails. For the 

particular lamina of Figure 9, all fibers in the Kevlar buffer strip fail 

before fiber B attains its failure stress, whereas for S-glass and Nylon, 

fiber B fails when there are still some fibers left unbroken, i.e., the 

crack jumps the buffer strip. The ultimate lamina failure stresses are 

u 00 = 0.272 ault for Kevlar 

(5 m = 0.395 ault for S-glass, and 

u a3 = 0.444 uult for Nylon, 

where CJ ult is the ultimate fiber stress as determined from an unnotched 

Graphite/epoxy laminate. The material properties used for these results 

are given in Table 1. The results of Figure 10 indicate Nylon to be the 

best of the three materials but this is only true if the matrix can 

support the very large failure strains (about 20%) of Nylon. In a typical 

angle-ply laminate with Nylon buffer strips and with continuous 245 

graphite plies, high strain levels certainly cannot be reached before 

failing the angle-plies and continuing the crack. This behavior was 

observed by Verrette and Labor [4]. The extension of this study to 

37 



-- 1.t ----- - 
I :-\ 

n = fl \- 

I plane I 
(graphite/ 

epoxy) 

\ 0.; 
\ 

T\ 
\ 

0.6\ 

u L-0 

-1 
u 

ult 

epoxy Kevlar or S-glass/epoxy 

nylonleooxy / 

-24 -20 -16 -12 -8 -4 

- 3F 

8_ 

. 

\ - 
\ 
I 

4’ 

z 

0 

- fiber A 
_ _ fiber B 

Kevlar or S-glass/epoxy 
+\c/ 

\ 
\ 

I I 

4 8 
N* 

Fig&e 10. Failure Stress as a Function of Crack Growth 



account for angle plies is surely necessary to represent accurately such 

low modulus fibers. 

TABLE 1. FIBER PROPERTIES 

fiber 

Nylon 

Kevlar 

mass den ity 
4 

modulus ult. stress 
Gms/m MPa MPa 

84 2000 233 

106 111400 2020 

S-glass 199 101000 2800 

Graphite 155 300000 2800 

In Figures 11-13 the effect of buffer strip width on crack growth 

through the strip is indicated. The ultimate failure stress of the 

lamina as a function of buffer strip width is plotted in Figure 14. 

From Figure 14 it is seen that for Nylon the ultimate failure stress 

continues to increase with an increase in width, whereas for S-glass and 

Kevlar about ten fiber widths is optimum. 

Table 2 gives a comparison of the ultimate lamina failure stress 

for a buffer strip of ten fibers, first for equal area and then for 

equal weights of the fibers. These results are normalized with respect 

to S-glass. A Kevlar region of two plies is approximately equivalent to 

one ply of S-glass in weight and it is seen that S-glass is still superior 

to Kevlar. This agrees with results obtained by Poe and Kennedy [5]. 

Next, results are presented for the finite width strip with broken 

fibers forming a central notch and subjected to a uniform remote axial 

stress as shown in Figure 7. The stress c.oncentration factors for various 

notch lengths (number of broken fibers, M) are obtained corresponding to 
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TABLE 2. COMPARISON OF LAMINA FAILURE STRESS 

fiber 

Nylon 

Kevlar 

uJGult OJ%lt 
equal area equal weight 

0.444 0.472 

0.272 0.318 

S-glass 0.395 0.395 

two widths, NW = 24 and 48. Following Hedgepeth [6] the stress concentra- 

tion factors for a uni-directional infinite region are obtained using the 

relation 

a ON+1 
N+l = 7 = 

d-6.8. . - . . . .(2M+2) 
3.5.7. . . . . . .(2M+l) (67) 

where 

N+l = index of the first unbroken fiber at the notch tip, 

M = total number of broken fibers in the notch, 

$+I = stress concentration in fiber N+l, 

ON+1 = axial stress in fiber N+l, and 

(5 co = applied remote stress. 

By comparing the above two stress concentration factors corresponding 

to a given notch length the finite width correction factor for a uni- 

directional strip is obtained and is given in Table 3. Also given in 

Table 3 are the corresponding finite width correction factors for an 

isotropic strip obtained from the following relation [13] 

Y2 = 1.0 + 0.1282 (2a/W)-0.2881 (2a/W)2+1.5254 (2a/W)3, (68) 

where, 

Y2 = finite width correction factor, 

a = half-crack length, and 

w = width of the strip. 
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From Table 3 it is seen that the finite width correction factors 

for the isotropic strip and the uni-directional strip are not signifi- 

cantly different for aspect ratios (notch length to strip width ratios) 

less than 0.5. For higher values of aspect ratios there is a considerable 

difference between the two cases. An aspect ratio of 0.9167 corresponds 

to 22 broken fibers in the 24 fiber strip and all the applied load is 

carried by the two remaining intact fibers giving a stress concentration 

'factor of 11.0, (22x,1.0/2). Similarly, the other limiting case corre- 

sponding to the aspect ratio of 0.9583 in which 46 fibers are broken out 

of 48, leaving the two end fibers to carry all the applied load giving a 

stress concentration of 23.0 (46/2). These two limiting cases are pre- 

dicted accurately by the above solution indicating the validity of the 

model. 

TABLE 3. FINITE WIDTH CORRECTION FACTORS 

2a=Mxd 

W= NW x d 

d=fiber spacing 

Finite width correction factors 

2a/W uni-directional strip 
-' Isotropic 

NW = 24 NW = 48 

0.1667 1.01334 1.01125 1.02042 

0.25 1.02890 1.02514 1.03788 

0.3333 1.05207 1.04581 1.06722 

0.5 1.13040 1.11598 1.18275 

0.75 1.44760 1.39280 1.57762 

0.9167 2.57412 3.7 2.05049 

0.9583 3.77560 2.20070 
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From the above results and discussions the following conclusions 

can be made. The method predicts the fracture behavior of a hybrid 

laminate in terms of material properties, geometry and initial crack 

length. The results agree well with those obtained experimentally for 

buffer strips of high modulus fibers such as S-glass and Kevlar, where 

the stiffness of the angle-plies is very small compared to that of zero 

degree ply. For low modulus (high failure strain) buffer strip materials 

such as Nylon, in which the stiffness of continuous angle-plies is com- 

parable to that of the axial buffer strip fibers, the model is inadequate 

due to the basic assumption made in idealizing the laminate as a uni- 

directional composite. The method predicts the best buffer strip material 

to be one with a low modulus and as large an ultimate strength as 

possible, e.g., S-glass is superior to Kevlar. 

As stated earlier, the main aim of this work was to understand the 

basic mechanism of crack growth and arrest in hybrid laminates, keeping 

the model as simple as possible. This goal has been achieved. However, 

in order to represent an actual buffer strip panel more realistically, 

the model certainly needs and has the potential for, further modifications. 

An immediate extension is to model the panel as a periodic uni-directional 

imulating the regular placement of the buffer strips. 

angle plies must be accounted for by either adding a cover 

i-directional laminate or by some other means. Finally, 

the effect of matrix damage in the form of longitudinal yielding and 

splitting at the crack tip and at the interfaces must be incorporated. 

hybrid laminate s 

Next, the role of 

sheet over the un 
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